Improved Chen-ricci Inequality for Lagrangian Submanifolds in Quaternion Space Forms
نویسنده
چکیده
In this article, we obtain an improved Chen-Ricci inequality and completely classify Lagrangian submanifolds in quaternion space forms satisfying the equality. Our result is an affirmative answer to Problem 4.6 in [12].
منابع مشابه
An Improved Chen-ricci Inequality
Oprea proves that Ric(X) ≤ n−1 4 (c + n||H||) improving the Chen-Ricci inequality for Lagrangian submanifolds in complex space forms by using an optimization technique. In this article, we give an algebraic proof of the inequality and completely classify Lagrangian submanifolds in complex space forms satisfying the equality, which is not discussed in Oprea’s paper.
متن کاملRicci Curvature of Quaternion Slant Submanifolds in Quaternion Space Forms
In this article, we obtain sharp estimate of the Ricci curvature of quaternion slant, bi-slant and semi-slant submanifolds in a quaternion space form, in terms of the squared mean curvature.
متن کاملIsotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012